Convergence Results on an Algorithm for Norm Constrained Regularization and Related Problems
نویسنده
چکیده
The constrained least-squares regularization of nonlinear ill-posed problems is a nonlinear programming problem for which trust-region methods have been developed. In this paper the convergence theory of one of those methods is addressed. It will be proved that, under suitable hypotheses, local (superlinear or quadratic) convergence holds and every accumulation point is second-order stationary.
منابع مشابه
A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملEfficient Strategy based on Improved Biogeography-based Algorithm for Inventory Routing problem
Researchers and urban administrators have often considered the routing problem as one of the fundamental phases in developing hazard management systems. In this research, a routing problem is investigated and analyzed by proposing an enhanced metaheuristic algorithm based on biogeography. In this problem, the production planning, inventory management, and distribution planning have been conside...
متن کاملAn Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm
The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...
متن کامل